

Dr. Mike Chih-Che Lin, President of EstiNet Technologies

Our 2018 Work with Open Source Networking Projects

- Enhanced from Open DayLight Controller
 - Hydrogen → Lithium → Carbon → Nitrogen →
 Oxygen
- Bugs fixed and new bundles (modules) added into the original open-sourced package
- Provide Restful North-bound API (NBI) for upperlayer Management System
- Provide both OpenFlow and SNMP Southbound APIs for SDN devices (SDN Switches and IoT WiFi AP)
- Integrating common campus-level network services as NFVs
 - DHCP Server
 - Radius Server

Developed an IoT SDN Controller Platform based on Open DayLight for Smart City and edge networks

Overview of Our Changes to ODL

Hybrid-mode SDN Controller for IoT/Campus/Surveillance

Implement OpenFlow Table Features on Domestic Realtek IC

- 24 1-Gbps Ethernet RJ-45 port
- POE port supported by RT188P
- 4 1-Gbps SFP port

Major Features

- Realtek RTL838-series ASIC inside
- Provide 1K flow entries
- Provide hardware-based meters
- Support OpenFlow 1.3 (47.8% compliance)
- Support OVS/OVSDB
- Support Legacy protocol suite (STP/RSTP/VLAN/QiniQ/IGMP/QoS)

Our Alpha Testbed for 100+ Device Scale

- Comprises 45 Raspberry Pi to build an "IoT Device Access Testbed"
- Every Pi emulates 3-6 IoT device or end hosts. The whole testbed is capable of emulating up to 270+ hosts being simultaneously online.
- Unified control by a central script, allowing quick launch of experiments

Our Beta Testbed for 100,00+ IoT Devices

- Located in Si-Soft Research Center, Hsinchu Science Park.
- 84-100 real RT188T switch, which uses Realtek's 838 series IC.
- 4 high-speed servers, emulating 40 virtual switches being online.
- 100 Raspberry Pi emulating 100,00+ IoT devices
- Capability: emulating a large network composed of 100 switches, connected with 10,000 IoT devices

Problem of Testing with Real-world Testbed

- Complexity of Deployment
 - Deployment usually requires 1-2 engineers to work half-to-one day.
- Complexity of Launching Script
 - Requires 1 engineer to spend one day to write and test the start script
- Complexity of Changes
 - Difficult to change → So, we don't change it!

In the past, we used "mininet" to do pre-testbed test.

What we learned from VT-Mininet

This inspired us!

What do we want?

Container → clean and convenience name space isolation

test real-life programs

No try-and-error for time dilation setting \rightarrow adaptive virtual time control

We Modified EstiNet Network Simulator to Achieve This!

- Formally named as NCTUns (National Chiao Tung Univ. network simulator, http://nsl.cs.nctu.edu.tw/NSL/software.html)
- IP-level routing-table manipulation approach to run real-life programs
- Already use the virtual time notion
- Event-driven approach for time advancing → a type of adaptive virtual time control

Patented Approach to Control & Sync System Times of Linux Containers

Modification Summary:

- Process Table
 - A new field denoting the invocation of the IO system calls that may not generate timer events
- Kernel
 - CPU occupation checking logic
 - New notification events for SE
- SE
 - Add a new syscall so that it can check if a child process is calling specific IO system calls.

Taiwan Patent: I709308 "網路模擬器平台上之時間控管方法及系統", 2020/11/01

Comparison among Time Control Methods for Linux Containers

		" /b a	Witne
	ASAP Event Scheduling	Loading Monitor	Time Dilation
Rationale	"Event-rized" packets with timestamp sorting and execution	Use a fixed coefficient TDF and check the CPU load to properly shorten the physical elapsed time	Use a fixed coefficient TDF to shorten the physical elapsed time
Software Representatives	EstiNetX	MiniNet-HiFi	VT-MiniNet Diecast SVEET (Event+Time Dilation) SliceTime (NS3+VM, loose time sync.) TimeJails/NETBalance TimeKeeper SELENA (VM-based + Time Dilation)
Download Availability	Yes (Official Website)	Yes (GitHub)	VT-MiniNet (GitHub) Diecast (NA)

Incoming 5G Era

Objective of 5G Spec.

eMBB: Enhanced Mobile Broadband

Downlink: 20Gbps

Uplink: 10Gbps

URLLC: Ultra-reliable and Low Latency Communications

- Control-plane Latency: 10ms
- Data-plane Latency: 0.5ms
- Mobility unavailability: 0ms
- Reliability: 99.999%

mMTC: massive Machine Type Communications

106 device/km² (under certain QoS req.)

5G Network Architecture

FIG. 3.3 5G Core architecture visualized with Service-Based interfaces.

New Architecture of 5G Core:

- Micro-Service
- Service-based Interface
 - Realize ServiceFunction Chain in SDN
 - HTTP RESTFUL System
 - REST
 (Representational State Transfer)

Difference Between Container and VM

VM Architecture

Container Architecture

Introduction to Free5GC

Members

Platinum

Silver

- Developed by Prof. Jyh-Cheng Chen, NCTU, Taiwan
- Free to download and use
- Most of source codes are open (a small portion of codes are in binary form)
- Operation with members' fee and supported by Governmental R&D projects

Free5GC Stage-3 Release

Reference Architecture for Stage 2:

Fig. 2: Stage 2 architecture of free5GC

Release in April, 2020

- Support Service-based Interface
 - Micro-service
 - Restful HTTP API Arch.

Support N3IWF function

Concept of Container

- Conceptually isolated unit for a group of software package
 - Application
 - Library
 - CPU+MEM+Storage+Network
- Linux namespace technology
 - CPU namespace
 - Memory namespace
 - Storage namespace
 - Network interface namespace

Source: https://blog.trendmicro.com.tw/?p=60814

Difference between Container and VM

Translation Approach

ID (Data Structure) Approach

VM Architecture

Container Architecture

Micro-service Arch. Fits into Container Technology

RAN+UE

UPF

DN

Our Porting Approach

In our EstiNet11 environment, we created 9 network nodes which are ready to load Docker

images.

Our Porting Approach

We use Free5GC source codes to create a single Docker image which contains all 5GC

micro services

Open vSwitch							
ode ID: 1		Node	e Type: OVS				
Switching	Application	Interface	Flow Classification	Virtual Ma	achine	unction S	
Resourc	e Allocation an	d Isolation					
	ux Namespace	- 1001011				C.T.O.N.	
	cker Contair		Docker Image List	×	C.D.I		
		ocker Image	List				
List of A		estinet10/p4_					
Additional Reference			ora24:v1 /alu/ubuntu_ndpi:latest			Add	
		locker.io/sma	allko/myfedora:latest			Select	
						Delete	
						Delete All	
					С	.A.T.O.N.	
			ОК	Cancel			
Apply	/ Real-world					C.T.O.N.	
simulatio web brov	on. However, fo wser, the real-w e enabled to let	or some appli orld clock is	k is applied to every ications, such as the a must reqirement. In t node be based on the	SSL verifica	ation on a is function		
				-			
command C	Console			Мо	dule Editor	ОК	
						Cancel	

Our Porting Approach

3 Load the Docker image onto each node

- 4 Configure a specific micro service for each chosen node
 - e.g., the AMF node runs the AMF micro service on its starting script
 - Follow the same way that one runs Free5GC in the real world

Modifications to Free5GC v3.0.3

- In our environment, we change to the type of the micro service process to "Real-time Process" in Linux kernel.
- We change the SCTP connections used in Free5GC from non-blocking mode back to blocking mode, in order to prevent AMF from occupying too much CPU resource. This will cause the issue that an UE cannot attach to the network.
- Fixed the issue that SMF always returns the same Network Slicing ID.

5GC Micro-service Architecture on Containers

All micro-services of 5GC on one machine is realized by the Linux Container Technology. Next Question: How to achieve repeatable results and to do observations?

A Result-repeatable 5G Network Platform by Software

RAN+UE

- Have done the 5GC part some patches
- Created UE+RAN simplified implementation
- Each component is run by a container and time synchronized/controlled by the patented SE and kernel modifications

Video Demo

 Run a 5G network simulation with Free5GC and synchronized multiple visual packet analyzers

User List of This Platform

Taiwan

- National ChiaoTung University
- National Sun Yat-sen University
- National Taipei University of Education
- National Yunlin University of Science and Technology
- National Kaoshung University of Science and Technology
- FuJen Catholic University
- National Formosa University
- TungHai University
- ChaoYang University of Technology

Overseas

- India
 - IIT Bhubaneswar
 - · Manipal University, Jaipur
- France
 - Université Paris-Est Créteil (UPEC, Paris 12th Univ.)
- Slovak
 - Slovak University of Technology in Bratislava
- China
 - BeiJing JiaoTong University
 - ChongQing JiaoTong University
 - XiDian University
 - GuiLin University of Aerospace Technology

Thanks very much for your listening!

Q&A Time